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Abstract 
 
In this paper, we develop acceptance sampling plan when the lifetime experiment is truncated at 

a pre-assigned time. The minimum sample size required to ensure a specified median life of the 

experimental unit is provided when the lifetimes of the units follow Fréchet distribution. The 

operating characteristic values of the sampling plans as well as the producer’s risk are also 

presented. Examples are provided for illustrative purposes. 
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I.  INTRODUCTION 
 

Acceptance sampling plan (ASP) is a useful tool for ensuring quality in the field of statistical 

quality control. It is widely used when the testing is destructive, the cost of complete and 

thorough inspection is very high and/or it takes too much time. A random sample is selected 

from the lot and on the basis of information yielded by the sample, a decision is made regarding 

the accepting or rejecting the lot. It is served as a tool in which the consumer decides to accept 

or to reject a lot of products manufactured by the producer, based on the results of a random 

sample selected from the lot. The plan decides the minimum sample size required to draw from 

the large lot to achieve certain acceptance and non-acceptance criteria for the lot. So, an ASP 

consists of the number of units on test (n) and the acceptance number (c) such that if there are at 

most c failures out of n, the lot is accepted. For a given ASP, the consumer's and producer's risk 

are the probabilities that a bad lot is accepted and a good lot is rejected, respectively. Usually, 

with every acceptance sampling plan, the associated consumer's and producer's risks are also 

presented. For more details, one may refer to [1] and [2]. 

Any life testing experiment is carried out to obtain the lifetime (i.e., time to failure) of an item. 

In practice, the life test is terminated at a pre-fixed time, called truncation time (t), and the 

number of failures that occurred during the time period is recorded. In such an experiment, one 

may be interested to determine the probability that an experimental unit which has satisfactory 

performance during the time period t is classified as a non-defective unit. The acceptance 

sampling procedures can therefore be applied to life tests. 

The standard approach to handle this problem is to assume a parametric model for the lifetime 

distribution as it provides insight into characteristics of failure times and hazard functions that 

may not be available with non-parametric methods and then to find the minimum sample size 

required to ensure a certain mean/median life (known as quality parameter) of the lifetime 

distribution of the items in the lot, when the experiment is stopped at a pre-determined time t. 

Extensive work has been done on the ASP, assuming different parametric forms of the lifetime. 

ASP based on truncated life tests for exponential distribution was first discussed in [3]. The 

results were extended for the Weibull distribution in [4]. References [5] and [6] provided 

extensive tables on ASP for gamma, normal and log-normal distributions. References [7], [8], 

[9], [10], [11], and [12] provide the time truncated ASP for half-logistics, log-logistics, 

Rayleigh, generalized Birnbaum-Saunders, generalized exponential, and generalized Weibull 

distributions respectively.  
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The Fréchet distribution was introduced by Fréchet [13] as one of the extreme value 

distribution. The maximum of a random sample after proper randomization can only converge 

in distribution to one of the three possible distributions, the Gumbel distribution, the Frèchet 

distribution or the Weibull distribution as discussed in [14].  In usual practice also, we try to 

provide the best component to the system and so lives of components may be assumed to follow 

a Frèchet distribution. The distribution has been used in modeling and analyzing several 

extreme events including reliability, accelerated life testing, earthquakes, wind speeds, 

floods, rain fall, sea currents, stock index, and so on. The detailed discussion on various 

applications of the Fréchet distribution can be found in [15], [16], [17], [18], [19], and the 

references therein. 

In this paper, we present a methodology to find the minimum sample size necessary to ensure a 

specified median life based on Fréchet distribution when the life test is terminated at a pre-

assigned time, t, and when the observed number of failures does not exceed a given acceptance 

number, c. The decision procedure is to accept a lot only if the specified median life can be 

established with a pre-assigned high probability P*, which provides protection to the consumer. 

The life test experiment gets terminated at the time at which (c + 1)st failure is observed or at 

time t, whichever is earlier. For a given acceptance sampling plan, a good lot might be rejected 

with a non-zero probability and that is known as the producer's risk. For different acceptance 

plans, we present the associated producer's risk also, based on the operating characteristic 

function values. In practice, instead of median life the consumer may prefer to characterize the 

quality based on some other percentile point (may be 75-th percentile point). Some examples 

have been discussed for illustrative purposes. 

 

II. METHODOLOGY 

A random variable X is said to follow Fréchet distribution [12] with parameters (β, λ), written 
as FR( β, λ), if the distribution function of X is given by 

 
where β is the shape parameters and λ is the scale parameter. The pth percentile point of FR(β, 
λ), say  is given by  

 
Therefore, the median of FR(β, λ) becomes 
 

 
which eventually yields      
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where  is the assured or targeted median of the experiment and  is the corresponding value 

of the scale parameter λ for given . It is obvious that for fixed  β, 

Now we develop the ASP for the FR distribution with known  to 

ensure that the median lifetime of the items under study exceeds a pre-determined quality 

provided by the consumer say  equivalently  exceeds with a minimum probability P*. 

As discussed before, usually the test terminates at a pre-specified time t and the number of 

failures during this time point are noted. Based on the number of failed items, a confidence 

limit (lower) on the median is formed. In the present ASP, the target median is accepted, if and 

only if the number of failures at the end of the time point t does not exceed c, the acceptance 

number. Naturally, if more than c failures already occurs before t, there is no point in 

continuing the test. In this case as soon as (c+1)st failure takes place before time point t, the test 

terminates with the decision not to accept the lot. Under these circumstances, one wants to 

obtain the smallest sample size, n, required to achieve these objectives. 

 

        The problem can be formulated as follows: given 0<P*<1, , t and c, we are to find out 
the smallest n so that if the observed number of failures does not exceed c, it is ensured that 

 with a minimum probability P* i.e. to obtain n such that the inequality 
 
                                 (5)  
 

is satisfied where 

                       (6) 

Note that  is monotonically increasing in  for fixed α and β, i.e.  for 

 or equivalently,  The operating characteristic (OC) function of the 

sampling plan provides the probability of accepting the lot. For the above ASP, 

this probability is given by 
                          for    

On the other hand, the ratio of the true median and the assured median can be found out 
under the same ASP when the producer’s risk (say, γ) which is the probability of rejection 
of the lot when  , is also given. The producer’s risk is given by 
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γ . For the given sampling plan, and for given γ, one can obtain 

the minimum value of  or, equivalently , for which  

        
satisfies the inequality 

 
 

III.  RESULTS 

 

A.  Description of Tables 

Given  and assured median , we obtain  from (4), calculate  for given t and then 

get p from (6). Substituting p in (5), we get minimum sample size, n, required to attain the 

assured median life  with probability atleast P*.  Fréchet distributed lifetime having   

is considered for illustrative purposes throughout the paper. Table 1 provides the minimum 

value of n for which the present time truncated ASP is satisfied. We have considered P* = 0.90, 

0.95 and = 0.628, 1.571, 2.356, 3.927, 4.712 as found in [5], [6], [8], [10], and [12] which 

will make the comparison easier. The Operating characteristic function values for the same plan 

for different values of P* and  are presented in Table 2. Table 3 represents the minimum ratio 

of the true median life to the assured median life for the acceptance of a lot with the producer's 

risk 0.05. Let us describe the tables with the following illustrations.  

 In Table 1, when P* = 0.90, 1.571, c = 2, the corresponding value of n is 10. It implies 

that out of 10 items, if 2 items fail before time point t, then a 90% upper confidence interval of 

λ will be (  In other words, if out of 10 items, less than or equal to 2 items fail before 

time point t, then we can accept the lot with  probability 0.90 with the assurance that 

 

In Table 2, when P* = 0.90, 1.571, c = 2, the corresponding operating characteristic 

function value is 0.9703 when .  It implies, if one accepts the above time truncated 

ASP, i:e: the lot is accepted if out of 10 items, less than or equal to 2 items fail before time 

point t, then if  or *1.417t,  then the lot will be accepted with probability at 
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least 0.596. 

In Table 3, we obtain  for the acceptance of a lot with the producer's risk 0.05. In this case for 

example, when the consumer's risk is 10%, i:e: P* = 0.90, c = 2, 1.571, the tabular value of 

 9.36. It implies if  9.36*1.417t¸ then with n = 10 (as obtained from Table 1) and c = 

2, the lot will be rejected with probability less than or equal to 0.05. 

 

B. Tables 

Table1. 

Minimum sample size necessary to assure that the median life exceeds a given value , with 

probability P* and the corresponding acceptance number, c, using binomial probabilities 

   
P* C 0.628 1.571 2.356 3.141 3.972 4.712 

0.90 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

7 
13 
18 
22 
27 
31 
35 
40 
44 
48 
52 

4 
8 
10 
13 
16 
19 
22 
24 
27 
29 
32 

4 
6 
8 
11 
14 
17 
19 
22 
23 
25 
27 

3 
6 
8 
10 
12 
14 
16 
18 
20 
22 
24 

3 
5 
7 
9 
11 
13 
15 
17 
19 
21 
23 

3 
5 
7 
9 
11 
13 
15 
17 
18 
20 
22 

0.95 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

10 
16 
21 
25 
32 
36 
40 
44 
48 
52 
57 

6 
9 
12 
15 
18 
21 
24 
27 
30 
32 
34 

5 
7 
10 
13 
17 
19 
21 
23 
25 
27 
29 

4 
6 
9 
11 
14 
16 
18 
21 
22 
24 
26 

4 
5 
8 
10 
13 
15 
17 
18 
 20 

   22 
   24 

4 
6 
8 
10 
12 
14 
16 
18 
20 
21 
23 
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Table 2. 

OC values for the time truncated ASP for a given P* and , when c=2. 

  
P* n  2 4 6 8 

0.90 12 
7 
6 
5 

0.628 
1.571 
2.356 
3.141 
 

0.6731 
0.5931 
0.5485 
0.5927 

0.9334 
0.8472 
0.7948 
0.8044 

0.9848 
0.9361 
0.8977 
0.8954 

0.9959 
0.9709 
0.9454 
0.9400 

0.95 14 
8 
7 
6 

0.628 
1.571 
2.356 
3.141 

 

0.6623 
0.5868 
0.5291 
0.5374 

0.9225 
0.8263 
0.7884 
0.7902 

0.9812 
0.9311 
0.8897 
0.8934 

0.9945 
0.9687 
0.9365 
0.9399 

 

Table 3:  

Minimum ratio of true median life to specified median life for the acceptance of a lot with 

producer's risk of 0.05 

 

  
P* c 0.628 1.571 2.356 3.141 3.972 

0.90 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

9.25 
8.32 
7.55 
6.30 
5.68 
5.23 
4.63 
3.25 
2.98 
2.31 
1.98 

11.23 
10.54 
9.36 
8.59 
7.68 
6.74 
5.87 
4.21 
3.52 
3.36 
2.12 

13.53 
11.06 
10.31 
9.35 
8.15 
7.44 
6.29 
5.89 
4.98 
4.27 
2.68 

16.98 
12.67 
11.35 
10.11 
9.67 
8.21 
7.82 
6.42 
5.61 
5.11 
4.34 

20.32 
14.55 
12.79 
11.38 
10.12 
9.60 
8.54 
7.06 
6.32 
6.14 
5.25 

0.95 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

11.12 
9.06 
8.65 
7.69 
6.21 
 5.74 
5.23 
4.37 
3.18 
2.38 
2.09 

12.36 
10.14 
9.85 
8.12 
7.35 
6.87 
6.13 
5.62 
4.35 
3.91 
3.25 

15.96 
11.98 
10.08 
9.65 
8.55 
7.81 
7.19 
6.54 
5.38 
4.19 
3.14 

18.39 
13.12 
11.95 
10.17 
9.14 
8.14 
6.85 
7.18 
6.57 
5.95 
4.13 

22.27 
16.31 
13.67 
12.11 
11.02 
9.99 
9.15 
8.69 
7.37 
6.54 
5.16 
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V.  CONCLUSION 

 

In any acceptance sampling plan, it is crucial to determine the minimum sample size required to 

draw from a large lot of items for the acceptance or rejection of the lot subject to attaining an 

assured average life of the items for given consumer’s risk. We have proposed such an ASP for 

Fréchet distribution here which has wide applications in extreme theory including reliability, 

finance, hydrology etc.  We have considered the time truncated acceptance sampling plan in 

this paper for the Fréchet distribution. We have assumed that the shape parameter is known and 

presented the table for the minimum sample size required to assure a certain median life of the 

experimental units. We have also presented the operating characteristic function values and the 

associated producer's risks along with the minimum ratio of the true median life to the assured 

median life. The current plan is able to produce similar tables for the shape parameters and 

other percentiles also.  As future research problems, one can think of applying accelerated life 

testing in ASP or using Bayesian ASP in the current life testing procedure.  
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